How Digital Technology Is Revolutionizing Dental Restorations


Digital technology is transforming dentistry in profound ways. It is enhancing efficiency, quality, and customization from diagnosis and treatment planning to final restoration placement. Transitioning from analog to digital systems leads to improved productivity, reduced costs, and superior patient experiences.


A key driver of the digital dentistry revolution is 3D radiography including cone beam computed tomography (CBCT). Digital radiographs provide detailed 3D information for accurate diagnosis and evaluation of treatment options. They reduce radiation exposure compared to traditional X-rays. CBCT allows for the precise placement of implants and treatment of complex cases.


Intraoral scanners capture digital impressions for the design and milling of restorations. They eliminate the need for putty or paste impressions, which many patients dislike. Digital impressions are dimensionally accurate and durable. They allow restorations to be modeled on screen and precisely fitted to individual teeth. Open architecture systems permit scanning files to be exported for production by different laboratories and milling centers worldwide.


Artificial intelligence (AI) and automated tooth shade matching tools are emerging technologies that will further streamline digital workflows. However, human judgment remains essential given the complexity of dental procedures.


CAD/CAM milling produces high-quality zirconia, lithium disilicate, and nano-ceramic restorations more efficiently and cost-effectively than traditional methods.3D printing aids in creating surgical guides, models, and temporary restorations with minimal manual work required. Digital smile design software enables virtual modification and evaluation of esthetic treatment options with patients in real-time on a computer screen or tablet. In summary, digital dentistry enhances quality, productivity, and patient experience through a seamlessly integrated workflow from the initial diagnosis to final restoration delivery. It gives dentists powerful tools to provide superior, customized treatment. Patients benefit from more refined, durable results in a comfortable high-tech setting.

Overall, the digital transformation of dentistry will continue rapidly advancing in the coming decades with new materials, automated techniques, and progressive strategies for implementation. The future of state-of-the-art dental practices is digital.


1. Raigrodski AJ, Chiche GJ, Potiket N, et al. The efficacy of posterior three-unit zirconium-oxide-based ceramic fixed partial dental prostheses: a prospective clinical pilot study. J Prosthet Dent. 2006;96: 237-244.

2. Sailer I, Fehér A, Filser F, et al. Prospective clinical study of zirconia posterior fixed partial dentures: 3-year follow-up. Quintessence Int. 2006;37:685-693.

3. Sturzenegger B, Fehér A, Lüthy H, et al. [Clinical study of zirconium oxide bridges in the posterior segments fabricated with the DCM system]. Schweiz Monatsschr Zahnmed. 2000;110:131-139.

4. Vult von Steyern P, Carlson P, Nilner K. All-ceramic fixed partial dentures designed according to the DC- Zirkon technique. A 2-year clin-ical study. J Oral Rehabil. 2005;32:180-187.

5. Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials. 1999;20:1-25.

6. Cramer von Clausburch S. Zirkon and Zirkonium. Dent Lab. 2003;51: 1137-1142.

7. Duran P, Moure C. Sintering at near theoretical density and properties of PZT ceramics chemically prepared. J Mater Sci. 20:827-833.

8. Guazzato M, Quach L, Albakry M, et al. Influence of surface and heat treatments on the flexural strength of Y-TZP dental ceramic. J Dent. 2005;33:9-18.

9. McLaren EA, Giordano RA. Zirconia-based ceramics: Material properties, esthetic and layering techniques of new veneering porcelain, VM9. Quintessence Dent Tech. 2005;28:99-111.

10. Helvey GA. Press-to-zirconia: a case study utilizing cad/cam technology and the wax injection method. Pract Proced Aesthet Dent. 2006;18:547-553.

11. Christel P, Meunier A, Heller M, et al. Mechanical properties and short-term in-vivo evaluation of yttrium-oxide-partially-stabilized zirconia. J Biomed Mater Res. 1989;23:45-61.

12. Raidgrodski AJ. Contemporary all-ceramic fixed partial dentures: a review. Dent Clin North Am. 2004;48:viii, 531-544.

13. Hauptmann H, Suttor D, Frank S, et al. Ma-terial properties of all-ceramic zirconia prosthesis. J Dent Res. 2000;19:507.

14. Roundtree P, Nothdurft F, Pospiech P. In-vitro investigations on the fracture strength of all-ceramic bridges of ZrO2- ceramic [abstract]. J Dent Res. 2001;80:57.

15. Rogers J, Weber W. Ceramic materials are not all the same. Spectrum Dialogue. 2007;6:76-80.

16. Li J, Liao H, Hermansson L. Sintering of partially-stabilized zirconia and partially-stabilized zirconia-hydroxyapatite composites by hot isostatic pressing and pressureless sintering. Biomaterials. 1996;17:1787-1790.

17. Reichert A, Herkommer D, Müller W. Copy milling of zirconia. Spectrum Dialogue. 2007;6:40-56.

18. Tinschert J, Natt G, Hassenpflug S, et al. Status of current CAD/CAM technology in dental medicine. Int J Comput Dent. 2004;7:25-45.

19. Liu PR. A panorama of dental CAD/CAM restorative systems. Compend Contin Educ Dent. 2005;26:507-508, 510, 512.

20. Witkowski S. CAD-CAM in dental technology. Quintessence. 2005:1-16.

21. Riquier R. Rapid manufacturing what will be next. Sprectrum Dialogue. 2007;6:116-120.

22. Kurbad A. Clinical aspects of all-ceramic CAD/CAM restorations. Int J Comput Dent. 2002;5:183-197.

23. Raigrodski AJ. Clinical and laboratory considerations for the use of CAD/CAM Y-TZP-based restorations. Pract Proced Aesthet Dent. 2003;15:469-476.

24. McLaren EA, Hyo L. CAD/CAM update: Technologies and materials and clinical perspectives. Inside Dentistry. 2006;Nov/Dec:98-103.

25. Doyle MG, Munoz CA, Goodacre CJ, et al. The effect of tooth preparation design on the break-ing strength of Dicor crowns: 2. Int J Prosthodont. 1990;3:241-248.

26. Boudrias P. The yttrium tetragonal zirconia polycrystals(Y-TZP) infrastructure: The new chapter in the search for metal framework replacement. J Dent Quebec. 2005;42:172-176.

27. Kosmac T, Oblak C, Jevnikar P, et al. The effect of surface grinding and sandblasting on flexural strength and reliability of Y-TZP zirconia ceramic. Dent Mater. 1999;15:426-433.

28. Kosmac T, Oblak C, Jevnikar P, et al. Strength and reliability of surface treatedY-TZP dental ceramics. J Biomed Mater Res. 2000;53: 304-313.

29. Gupta PK. Strengthening by surface damage in metastable tetragonal zirconia. Journal of the American Ceramic Society. 1980;63: 117-21.

30. Green DJ. A technique for introducing surface compression into zirconia ceramics. Journal of the American Ceramic Society. 1983;66: C178-C179.

31. Swain MV. Limitation of maximum strength of zirconia-toughened ceramics by transformation toughening increment. Journal of the American Ceramic Society. 1985;68:C97-C99.

32. Luthardt RG, Holzhüter MS, Rudolph H, et al. CAD/CAM-machining effects on Y-TZP zirconia. Dent Mater. 2004;20:655-662.

33. Garvie RC, Hannink RH, Pascoe RT. Ceramic steel? Nature. 1975;258:703-704.

34. Curtis AR, Wright AJ, Fleming GJ. The influence of surface modification techniques on the performance of a Y-TZP dental ceramic. J Dent. 2006;34: 195-206.

35. Swain MV, Hannink RHJ. Metastability of the martensitic transformation in a12mol%ceria-zirconia alloy: grinding studies. Journal of the American Ceramic Society. 1989;72: 1358-1364.

36. Siegel SC, Von Fraunhofer JA. Dental cutting: the historical development ofdiamond burs. J Am Dent Assoc. 1998;129: 740-745.

37. Yin L, Jahanmir S, Ives LK. Abrasive machining of porcelain and zirconia with a dental handpiece. Wear. 2003;255:975-989.

38. Jahanmir S, Xu HHK, Ives LK. In: Jahanmir S, Koshy P, Ramulu M, eds. Mechanism of material removal in abrasive machining of ceramics. Machining of Ceramics and Composites. NY: Marcel Dekker; 1999:11-84.

39. Luthardt RG, Holzhüter M, Sandkuhl O, et al. Reliability and properties of ground Y-TZP-zirconia ceramics. J Dent Res. 2002;81:487-491.

40. de Lima Navarro MF, Santos MJ, Mondelli RF, et al. Cementation considerations for CAD/CAM all-ceramic restorations. Pract Proced Aesthet Dent. 2004;16: 550-551.

41. Kanchanavasita W, Anstice HM, Pearson GJ. Water sorption characteristics of resin-modified glass-ionomer cements. Biomaterials. 1997;18:343-349.

42. Huang C, Kei LH, Wei SH, et al. The influence of hygroscopic expansion of resin based restorative materials on artificial gap reduction. J Adhes Dent. 2002;4:61-71.

43. Sindel J, Frankenberger R, Krämer N, et al. Crack formation of all-ceramic crowns dependent on different core build-up and luting materials. J Dent. 1999;27:175-181.

44. Snyder MD, Lang BR, Razzoog ME. The efficacy of luting all-ceramic crowns with resin-modified glass ionomer cement. J Am Dent Assoc. 2003;134: 609-612.

45. Goracci C, Cury AH, Cantoro A, et al. Microtensile bond strength and interfacial properties of self-etching and self-adhesive resin cements used to lute composite onlays under different seating forces. J Adhes Dent. 2006;8:327-335.

46. Hikita K, Van Meerbeek B, De Munck J, et al. Bonding effectiveness of adhesive luting agents to enamel and dentin. Dent Mater. 2007;23:71-80.

47. Magne P, Kwon KR, Belser UC, et al. Crack propensity of porcelain laminate veneers: A simulated operatory evaluation. J Prosthet Dent. 1999;81: 327-334.

48. Magne P, Versluis A, Douglas WH. Effect of luting composite shrinkage and thermal loads on the stress distribution in porcelain laminate veneers. J Prosthet Dent. 1999;81:335-344.

49. Magne P, Douglas WH. Porcelain veneers: dentin bonding optimization and biomimetic recovery of the crown. Int J Prosthodont. 1999;12: 111-121.

50. Addison O, Marquis PM, Fleming GJ. Resin elasticity and the strengthening of all-ceramic restorations. J Dent Res. 2007;86:519-523.

51. Palacios RP, Johnson GH, Phillips KM, et al. Retention of zirconium oxide ceramic crowns with three types of cement. J Prosthet Dent. 2006;96:104-114.

52. Matinlinna JP, Heikkinen T, Ozcan M, et al. Evaluation of resin adhesion to zirconia ceramic using some organosilanes. Dent Mater. 2006;22:824-831.

53. Xible AA, de Jesus Tavarez RR, de Araujo Cdos R, et al. Effect of silica coating and silanization on flexural and composite-resin bond strengths of zirconia posts: An in vitro study. J Prosthet Dent. 2006;95: 224-229.

54. Atsu SS, Kilicarslan MA, Kucukesmen HC, et al. Effect of zirconium-oxide ceramic surface treatments on the bond strength to adhesive resin. J Prosthet Dent. 2006;95:430-436.

55. Wolfart M, Lehmann F, Wolfart S, et al. Durability of the resin bond strength to zirconia ceramic after using different surface conditioning methods. Dent Mater. 2007;23:45-50.

56. Blatz MB, Sadan A, Martin J, et al. In vitro evaluation of shear bond strengths of resin to densely-sintered high-purity zirconium-oxide ceramic after long-term storage and thermal cycling. J Prosthet Dent. 2004;91:356-362.

57. Wegner SM, Kern M. Long-term resin bond strength to zirconia ceramic. J Adhes Dent. 2000;2:139-147.

58. Zhang Y, Lawn BR, Rekow ED, et al. Effect of sandblasting on the long-term performance of dental ceramics. J Biomed Mater Res B Appl Biomater. 2004;71:381-386.

59. Rekow ED. Dental CAD/CAM systems: a 20-year success story. J Am Dent Assoc. 2006;137 Suppl:5S-6S.

60. Dias De Souza GM, Silva N, Goes M, et al. Effect of metal primers on cementbonds to fully sintered zirconia. "". 2006; Abstract #324.

Previous: No Information